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6.6. Quadratic Bézier curves 105
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CHAPTER 1

Getting started in PostScript

In this book we use a program called Ghostscript, as well as one of several pro-
grams that in turn rely on Ghostscript running behind the scenes, to serve as
our PostScript R© interpreter and interface. All the programs we use are available
without cost through the Internet. Be careful – the language we are writing our
programs in is PostScript, and the program used to interpret them is Ghostscript.
See Appendix 2 for how to acquire Ghostscript and set up your programming
environment.

The interpreter Ghostscript has by itself a relatively primitive user interface that
will turn out to be too awkward to use for very long, but learning this interface will
give you a valuable feel for the way PostScript works. Furthermore, Ghostscript
will continue to serve a useful although limited purpose in debugging as well as
animations.

We begin in this chapter by showing how Ghostscript works and then later on
explain a more convenient way to produce pictures with PostScript.

1.1 SIMPLE DRAWING

Start up Ghostscript. On Unix R© networks this is usually done by typing gs in a
terminal window, and on other systems it is usually done by clicking on the icon
for Ghostscript. (You can also run Ghostscript in a terminal window – even on
Windows R© systems; see Appendix 2.) What you get while gs is running are two
windows – one a kind of terminal window into which you type commands and
from which you read plain text output and the other a graphics window in which
things are drawn.

The graphics window, which I will often call the page, opens up with a default
coordinate system. The origin of this coordinate system on a page is at the lower
left, and the unit of measurement, which is the same in both horizontal and vertical

1
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2 GETTING STARTED IN PostScript

The program Ghostscript running with image and terminal windows showing.

directions, is equal to a point exactly 1/72 of an inch in length. (This Adobe point
is almost, but not quite, the same as the classical printer’s point, which measures
72.27 to an inch.) The size of the graphics window will probably be either letter size
(8.5′′ × 11′′ or 612 × 792 points2) or the size of European A4 paper, depending
on your locality. As we will see in a moment, the coordinate system can easily be
changed so as to arrange x and y units to be anything you want with the origin
anywhere in the plane of the page.

When I start up running my local version of Ghostscript in a terminal window
I get a display in that window looking like this:

AFPL Ghostscript 7.04 (2002-01-31)

Copyright (C) 2001 artofcode LLC, Benicia, CA. All rights reserved.

This software comes with NO WARRANTY: see the file PUBLIC for details.

GS>

In short, I am facing the Ghostscript prompt GS>, and I am expected to type in
commands. Let’s start off by drawing a line in the middle of the page. On the left is
what the terminal window displays, and on the right is what the graphics window
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1.1 SIMPLE DRAWING 3

looks like:

GS>newpath

GS>144 144 moveto

GS>288 288 lineto

GS>stroke

GS>

(The grid is just there to help you orient yourself and is not displayed in the real
window.) The machine produces the prompts here, and everything else is typed by
you. The graphics window displays the diagonal line in the figure on the right.

If we look really closely at the line on the screen that comes up,
say with a magnifying glass, we’ll see a rather jagged image. That’s
because the screen is made up of pixels with about 75 pixels in an
inch.ButPostScript isascalablegraphics language,whichmeans
that if you look at output on a device with a higher resolution than
your screen, the effects of pixelization will be seen only at that
resolution. Exactly how the computer transforms the directions for drawing a line
into a bunch of black pixels is an extremely interesting question but is not one that
this book will consider. So, in effect, in this book all lines will be assumed to be . . .
well, lines – not things that look jagged and ugly – dare I say pixellated? – close up.

You draw things in PostScript by constructing paths. Any path in PostScript is
a sequence of lines and curves. At the beginning, we will work only with lines. In
all cases, first you build a path and then you actually draw it.

� You begin building a path with the command newpath. This is like picking up
a pen to begin drawing on a piece of paper. In case you have already drawn a
path, the command newpath also clears away the old path.

� You start the path itself with the command moveto. This is like placing your
pen at the beginning of your path. In PostScript, things are generally what you
might think to be backwards, and so you write down first the coordinates of the
point to move to and then the command.
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� You add a line to your path with the command lineto. This is like moving your
pen on the paper. Again you place the coordinates first and then the command.

� So far you have just built your path. You draw it – that is, make it visible – with
the command stroke. You have some choice over what color you can draw
with, but the color that is used by default is black.

From now on I will usually leave the prompts GS> out. Let me repeat what I hope to be
clear from this example:

� PostScript always digests things backwards. The arguments to an operator always go
before the operator itself.

This convention is called Reverse Polish Notation (RPN). It will seem some-
what bizarre at first, but you’ll get used to it. It is arguable that manual calcula-
tions, at least when carried out by those trained in European languages, should
have followed RPN conventions instead of the ones used commonly in mathemat-
ics. It makes a great deal of sense to apply operations as you write from left to
right.

RPN was devised by logicians for purely theoretical reasons, but PostScript is
like this for practical reasons of efficiency. There is one great advantage from a
user’s standpoint: it allows a simple “cut and paste” style of programming.

You would draw a square 2 inches on a side with the command sequence

newpath

144 144 moveto

288 144 lineto

288 288 lineto

144 288 lineto

144 144 lineto

stroke

If you type this immediately after the previous command sequence, you will just
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1.1 SIMPLE DRAWING 5

put the square down on top of the line you have already drawn:

I’ll tell you in Section 1.6 how to start over with a clean page. For now, it is
important to remember that PostScript paints over what you have already drawn just
like painting on a canvas. There is no command that erases what has already been
drawn.

There are often many different ways to do the same thing in PostScript. Here is
a different way to draw the square:

newpath

144 144 moveto

144 0 rlineto

0 144 rlineto

-144 0 rlineto

closepath

stroke

The commands rmoveto and rlineto mean motion relative to where you were
before. The command closepath closes up your path back to the last point to
which you applied a moveto.

A very different effect is obtained with

newpath

144 144 moveto

144 0 rlineto

0 144 rlineto

-144 0 rlineto

closepath

fill
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This just makes a big black square in the same location. Whenever you build a path,
the operations you perform to make it visible are stroke and fill. The first draws the
path; the second fills the region inside it.

You can draw in different shades and colors with two different commands,
setgray and setrgbcolor. Thus,

0.5 setgray

newpath

144 144 moveto

144 0 rlineto

0 144 rlineto

-144 0 rlineto

closepath

fill

will make a gray square, and

1 0 0 setrgbcolor

newpath

144 144 moveto

144 0 rlineto

0 144 rlineto

-144 0 rlineto

closepath

fill

will make a red one. The rgb here stands for red, green, blue, and for each color
you choose a set of three parameters between 0 and 1. Whenever you set a new
color, it will generally persist until you change it again. Note that 0 is black and is
1 white. The command x setgray is the same as x x x setrgbcolor. You can
remember that 1 is white by recalling from high school physics that white is made
up of all the colors put together.

EXERCISE 1.1. How would you set the current color to green? Pink? Violet? Orange?

Filling or stroking a path normally deletes it from the record. So if you want to
fill and stroke the same path, you have to be careful. One way of dealing with this
is straightforward if tedious – just copy code. If you want to draw a red square with
a black outline, you then type
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1 0 0 setrgbcolor

newpath

144 144 moveto

144 0 rlineto

0 144 rlineto

-144 0 rlineto

closepath

fill

0 setgray

newpath

144 144 moveto

144 0 rlineto

0 144 rlineto

-144 0 rlineto

closepath

stroke

In Section 1.8 we will see a way to produce this figure without redundant typing.

EXERCISE 1.2. Run Ghostscript. Draw an equilateral triangle near the center of the page instead
of a square. Make it 100 points on a side with one side horizontal. First draw it in outline; then fill
it in black. Next, make it in turn red, green, and blue with a black outline. (You will have to do a few
calculations first. In fact, as we will see in Section 1.4, you can get PostScript to do the calculations.)

1.2 SIMPLE COORDINATE CHANGES

Working with points as a unit of measure is not for most purposes very convenient.
For North Americans, since the default page size is 8.5′′ × 11′′, working with inches
usually proves easier. We can change the basic unit of length to an inch by typing

72 72 scale

which scales up the x and y units by a factor of 72. Scaling affects the current
units, and so scaling by 72 is the same as scaling first by 8 and then by 9. This is
the way it always works. The general principle here is this:

� Coordinate changes are always interpreted relative to the current coordinate system.
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You can scale the x and y axes by different factors, but it is usually a bad idea.
Lines are themselves drawable objects of finite width. If scaling is not uniform, the
thickness of a line will depend on its direction. Thus, scaling x by 2 and y by 1 has
this effect on a square with a thick border:

To be sure to get both scale factors the same, you can also type 72 dup scale. The
command dup duplicates the previous entry.

When you scale, you must take into account that the default choice of the width
of lines is 1-unit. So if you scale to inches, you will get lines 1-inch wide unless you
do something about it. It might be a good idea to add

0.01389 setlinewidth

when you scale to inches. This sets the width of lines to 1/72 of an inch. A linewidth
of 0 is also allowable – it just produces the thinnest possible lines that do not actually
vanish. You should realize, however, that on a device of high resolution, such as
a 1200 DPI printer, such lines will be nearly invisible. Setting the line width to 0
contradicts the general principle of device independence – you should always aim
in PostScript to produce figures that do not in any way depend directly on the particular
device on which it will be reproduced.

EXERCISE 1.3. How would you scale to centimeters?

You can also shift the origin.

1 2 translate

moves the coordinate origin to the right by 1 unit and up by 2 units. The combi-
nation

72 72 scale

4.25 5.5 translate

moves the origin to the center of an 8.5′′ × 11′′ page.
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There is one more simple coordinate change: rotate.

144 144 translate

30 rotate

newpath

0 0 moveto

144 0 lineto

144 144 lineto

0 144 lineto

0 0 lineto

stroke

The translation is done first because rotation always takes place around the current
origin. Note that PostScript works with angles in degrees. This will cause us some
trouble later on, but for now it is probably A Good Thing.

EXERCISE 1.4. Europeans use A4 paper. Find out its dimensions and show how to draw a square
one centimeter on a side with its center in the middle of an A4 page. (Incidentally, what is the special
mathematical property of A4 paper?)

1.3 COORDINATE FRAMES

It is sometimes not quite so easy to predict the effect of coordinate changes. The
secret to doing so is to think in terms of coordinate frames. Frames are asso-
ciated to linear coordinate systems and vice versa. The way to visualize how the
coordinate changes scale, translate, and rotate affect drawing is by realizing
their effect on the frame of the coordinate system.

A simple frame, with units in centimeters
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Scaled by
√

2 in both directions

Translated by [1, 1]

Rotated by 45◦

There are two fundamental things to keep in mind when wondering how coordinate
changes affect drawing.

� Coordinate changes affect the current frame in the natural and direct way. That is to
say, 2 2 scale scales the current frame vectors by a factor of 2, and so on.

� Drawing commands take effect relative to the current frame.

For example, rotate always rotates the coordinate system around the current
origin, which means that it rotates the current coordinate frame. The commands
translate,scale, androtate, when combined in the right fashion, can make any
reasonable coordinate change you want (as well as a few you will probably never
want). The restriction of “reasonability” here means those that in effect lay down



P1: JzL-FcW/gos P2: JzL

CB762-01 CB762-Casselman-v1.cls September 2, 2004 10:42
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a grid of parallel lines on the plane. As an example, suppose you want to rotate
your coordinate system around some point other than the origin. More explicitly,
suppose you want to rotate by 45◦ around the point whose coordinates in the
current system are (2, 2). In other words, we want to move the current coordinate
frame as at the right.

The way to get this is

2 2 translate 45 rotate -2 -2 translate

In other words, to rotate the coordinate system by θ around the point P , you
perform in sequence (1) translation by the vector (P − O ) from the origin O to P ;
(2) rotation by θ ; (3) translation by −(P − O ).

The effect of “zooming in” is rather similar and is analyzed in Appendix 5.

1.4 DOING ARITHMETIC IN PostScript

PostScript is a complete programming language. But with the goal of handling
data rapidly, it has only limited built-in arithmetical capabilities. As in many
programming languages, both integers and real numbers are of severely limited
precision. In some implementations of PostScript, integers must lie in the range
[−32784, 32783], and real numbers are only accurate to about seven significant
places. This is where the roots of the language in graphics work show up, for nor-
mally drawing a picture on a page of reasonable size does not have to be extremely
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accurate. This limited accuracy is not usually a serious problem, but it does mean
you have to be careful.

At any rate, with arithmetical operations as with drawing operations the se-
quence of commands is backwards from what you might expect. To add two num-
bers, first enter the numbers followed by the command add. The result of adding
numbers is also not quite what you might expect. Here is a sample run in the
Ghostscript interpreter:

GS>3 4 add

GS<1>

What’s going on here? What does the <1> mean? Where is the answer?
PostScript uses a stack to do its operations. This is an array of arbitrary length

that grows and shrinks as a program moves along. The very first item entered is
said to be at the bottom of the stack, and the last item entered is said to be at its top.
This is rather like manipulating dishes at a cafeteria. Generally, operations affect
only the things towards the top of the stack and compute them without displaying
results. For example, the sequence 3 4 add does this:

Entry What happens What the stack looks like

3 The number 3 goes onto the stack 3

4 The number 4 goes above the 3 on the stack 3 4

add The operation add goes above 4 . . . 3 4 add

then collapses the stack to just a single number 7

You might be able to guess now that the <1> in our run tells us the size of the stack.
To display the top of the stack, we type =. If we do this, we get

GS>3 4 add

GS<1>=

7

GS>

Note that = removes the result when it displays it (as does the similar command
==). An alternative is to type stack or pstack, which displays the entire stack and
does not destroy anything on it.

GS>3 4 add

GS<1>stack

7

GS<1>
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The difference between = and == is too technical to explain here, but in practice
you should usually use ==. Similarly, you should usually use pstack, which is a bit
more capable than stack. There is a third and slightly more sophisticated display
operator calledprint. It differs from the others in that it does not automatically put
in a carriage return and can be used to format output. Theprint command applies
basically only to strings, which are put within parentheses. (Refer to Appendix 1
for instructions on how to use print.)

Other arithmetic operations are sub, mul, div. Some of the mathematical func-
tions we can use aresqrt,cos,sin,atan. For example, here is a command sequence
computing and displaying

√
3 ∗ 3 + 4 ∗ 4:

GS>3 3 mul

GS<1>4 4 mul

GS<2>add

GS<1>sqrt

GS<1>=

5.0

GS>

One thing to note here is that the number 5 is written as 5.0, which means that
it is a real number, not an integer. PostScript generally treats integers differently
from real numbers; only integers can be used as counters, for example. But it can’t
really tell that the square root of 25 is an integer.

EXERCISE 1.5. Explain what the stack holds as the calculation proceeds.

EXERCISE 1.6. Use Ghostscript to calculate and display
√

92 + 72.

Here is a list of nearly all the mathematical operations and functions.

x y add puts x + y on the stack
x y sub puts x − y on the stack
x y mul puts xy on the stack
x y div puts x/y on the stack
m n idiv puts the integer quotient of m divided by n on the stack
m n mod puts remainder after division of m by n on the stack
x neg puts −x on the stack
y x atan puts the polar angle of (x, y) on the stack (in degrees)


